Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 280
Filtrar
1.
J Toxicol Environ Health A ; 87(10): 448-456, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38557302

RESUMO

Cerebral ischemia-reperfusion injury (CIRI) occurs frequently clinically as a complication following cardiovascular resuscitation resulting in neuronal damage specifically to the hippocampal CA1 region with consequent cognitive impairment. Apoptosis and oxidative stress were proposed as major risk factors associated with CIRI development. Previously, glycosides obtained from Cistanche deserticola (CGs) were shown to play a key role in counteracting CIRI; however, the underlying mechanisms remain to be determined. This study aimed to investigate the neuroprotective effect of CGs on subsequent CIRI in rats. The model of CIRI was established for 2 hr and reperfusion for 24 hr by middle cerebral artery occlusion (MCAO) model. The MCAO rats were used to measure the antioxidant and anti-apoptotic effects of CGs on CIRI. Neurological function was evaluated by the Longa neurological function score test. 2,3,5-Triphenyltetrazolium chloride (TTC) staining was used to detect the area of cerebral infarction. Nissl staining was employed to observe neuronal morphology. TUNEL staining was used to detect neuronal apoptosis, while Western blot determined protein expression levels of factors for apoptosis-related and PI3K/AKT/Nrf2 signaling pathway. Data demonstrated that CGs treatment improved behavioral performance, brain injury, and enhanced antioxidant and anti-apoptosis in CIRI rats. In addition, CGs induced activation of PI3K/AKT/Nrf2 signaling pathway accompanied by inhibition of the expression of apoptosis-related factors. Evidence indicates that CGs amelioration of CIRI involves activation of the PI3K/AKT/Nrf2 signaling pathway associated with increased cellular viability suggesting these glycosides may be considered as an alternative compound for CIRI treatment.


Assuntos
Isquemia Encefálica , Cistanche , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Ratos , Animais , Ratos Sprague-Dawley , Proteínas Proto-Oncogênicas c-akt/metabolismo , Antioxidantes/farmacologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Fosfatidilinositol 3-Quinases/farmacologia , Glicosídeos/farmacologia , Glicosídeos/uso terapêutico , Fator 2 Relacionado a NF-E2/farmacologia , Apoptose , Isquemia Encefálica/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Fármacos Neuroprotetores/farmacologia
2.
Arch Esp Urol ; 77(2): 183-192, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38583011

RESUMO

PURPOSE: This study aimed to determine the influence of miR-1297 on kidney injury in rats with diabetic nephropathy (DN) and its causal role. METHODS: A DN rat model was established through right kidney resection and intraperitoneal injection of streptozotocin (STZ). Sham rats did not undergo right kidney resection or STZ injection. The DN rats were divided into the DN model and antagomiR-1297 treatment groups. Kidney morphology was observed using hematoxylin and eosin staining. Renal function indices, including blood urea nitrogen (BUN), serum creatinine (SCr), and urinary protein, were measured using kits. Levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-1ß, superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) were determined through enzyme-linked immunosorbent assay (ELISA). Fibrin (FN), collagen type I (Col I), and α-smooth muscle actin (α-SMA) were assessed through western blotting and real-time reverse transcription-polymerase chain reaction. Apoptosis was detected using terminal deoxynucleotidyl transferase dUTP nick end labeling staining. miR-1297 targets were predicted using bioinformatic software and verified through luciferase reporter assay. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN)/phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway expression was analyzed through western blotting. RESULTS: AntagomiR-1297 reduced BUN (p = 0.005), SCr (p = 0.012), and urine protein (p < 0.001) levels and improved kidney tissue morphology. It prevented renal interstitial fibrosis by decreasing FN, Col I, and α-SMA protein levels (all p < 0.001). AntagomiR-1297 increased SOD (p = 0.001) and GSH-Px (p = 0.002) levels. Additionally, it reduced levels of cell inflammatory factors, including TNF-α, IL-6, and IL-1ß (all p < 0.001), and alleviated apoptosis (p < 0.001) in rat kidney tissue with DN. miR-1297 was pinpointed as a target for PTEN. AntagomiR-1297 increased PTEN expression and suppressed PI3K and AKT phosphorylation (all p < 0.001). CONCLUSIONS: AntagomiR-1297 can mitigate renal fibrosis, renal inflammation, apoptosis, and oxidative stress levels through the PTEN/PI3K/AKT pathway.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , MicroRNAs , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/farmacologia , Fosfatidilinositol 3-Quinase/genética , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinase/farmacologia , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Antagomirs/metabolismo , Antagomirs/farmacologia , Rim , MicroRNAs/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase/farmacologia , Diabetes Mellitus/metabolismo
3.
Zhonghua Yi Xue Za Zhi ; 104(10): 758-765, 2024 Mar 12.
Artigo em Chinês | MEDLINE | ID: mdl-38462356

RESUMO

Objective: To investigate the effects of lncRNA SNHG11 on proliferation, migration, invasion and apoptosis of colorectal cancer cancer cells and possible mechanisms. Methods: qRT-PCR was performed to detect the expression level of lncRNA SNHG11 in colorectal cancer tissues and its related cell lines. The correlation between SNHG11 expression and clinical prognosis of patients was assessed by bioinformatics techniques. Cultured CRC cell lines were transfected with shCtrl (shCtrl group), shSNHG11#1 (shSNHG11#1 group), shSNHG11#2 (shSNHG11#2 group), Control cDNA (Control cDNA group), and SNHG11 cDNA (SNHG11 cDNA), respectively. Thiazolyl blue (MTT), clone formation assay, Transwell assay, cell scratch assay, and flow cytometry were used to detect the proliferation, migration, invasion, and apoptosis of CRC cells in each group. Western protein blotting was used to detect the expression of relevant proteins in each group, and the effect of lncRNA SNHG11 knockdown on the growth of tumour cells in vivo was analysed by nude mice tumouring assay. Phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signalling pathway inhibitor LY294002 was used for rescue experiments. Results: The expression of lncRNA SNHG11 was significantly higher in colorectal cancer cells and tissues than in normal tissues (P<0.05). Survival analysis showed that the expression level of SNHG11 was not statistically associated with CRC survival (P>0.05). shSNHG11#2 group compared with shCtrl group. MTT OD490/570 values decreased, the number of CRC cell clones decreased, the number of Transwell cells decreased, the area of cell scratch decreased, and the apoptosis rate increased (P<0.05). The mesenchymal markers matrix metalloproteinase (MMP9), N-cadherin and vimentin were significantly reduced, and the expression of the epithelial marker E-cadherin was upregulated. The expression of anti-apoptotic proteins Bcl-2 and Bcl-xl was decreased, and the expression of pro-apoptotic protein Bax was increased (P<0.05).In vivo experiments showed that lncRNA SNHG11 knockdown inhibited the growth of colorectal cancer cells, and the expression of Ki67 was reduced in tumours (P<0.05). LncRNA SNHG11 knockdown inhibited the expression of p-PI3K, p-Akt and p-mTOR.The PI3K/Akt/mTOR signaling pathway inhibitor LY294002 was able to restore the malignant cytological progression of colorectal cancer cells induced by the overexpression of lncRNA SNHG11. Conclusions: LncRNA SNHG11 is highly expressed in colorectal cancer. lncRNA SNHG11 can promote the malignant progression of colorectal cancer cells by regulating the PI3K/Akt/mTOR signaling pathway, and this finding provides a new theoretical basis for targeted therapy of colorectal cancer.


Assuntos
Neoplasias Colorretais , RNA Longo não Codificante , Animais , Camundongos , Humanos , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinase/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , RNA Longo não Codificante/genética , Camundongos Nus , DNA Complementar/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/farmacologia , Neoplasias Colorretais/genética , Mamíferos/genética , Mamíferos/metabolismo
4.
Int Immunopharmacol ; 131: 111885, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38503015

RESUMO

Cinobufagin (CBG) is a natural active substance. Although its various pharmacological activities have been explored, the immunomodulatory activity of CBG remains unexplored. Therefore, this study aimed to investigate the anti-inflammatory and immunomodulatory activities of CBG ex vivo and in vivo. The immunomodulatory activity of CBG was investigated in RAW 264.7 cells. CBG showed no significant toxicity to cells. Additionally, 0.5-8 µg/mL CBG significantly increased the phagocytosis ability of macrophages and the secretion levels of IL-1ß and TNF-α. Thus, it exerted immunomodulatory effects. We established the immunosuppressive model induced by cyclophosphamide (CTX) in mice and studied the immunomodulatory activity of CBG in vivo. The experimental results showed that the intervention of CBG alleviated the CTX-induced weight loss, restored the lymphocyte nuclear cell number, and promoted the secretion and mRNA expression of cytokines IFN-γ, IL-4, IL-6, and IL-12. Moreover, CBG increased the immune organ index, protected the growth of the spleen and thymus, and improved the pathological changes in immunosuppressed mice. Western blot results showed that different concentrations of CBG upregulated the phosphorylation level of PI3K/Akt/mTOR in the spleen of CTX-induced immunosuppressed mice. This suggests that the immunomodulatory effect of CBG may be related to the regulation of PI3K/Akt/mTOR signaling pathway. This study provides a theoretical basis for developing CBG immune enhancers and opens up new ideas for the comprehensive utilization and development of CBG in factories.


Assuntos
Bufanolídeos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Fosfatidilinositol 3-Quinases/farmacologia , Ciclofosfamida/farmacologia , Terapia de Imunossupressão , Macrófagos , Serina-Treonina Quinases TOR
5.
Medicina (Kaunas) ; 60(3)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38541159

RESUMO

Background and Objectives: Muscle atrophy occurs when protein degradation exceeds protein synthesis, resulting in imbalanced protein homeostasis, compromised muscle contraction, and a reduction in muscle mass. The incidence of muscle atrophy is increasingly recognized as a significant worldwide public health problem. The aim of the current study was to evaluate the effect of whey peptide (WP) on muscle atrophy induced by dexamethasone (DEX) in mice. Materials and Methods: C57BL/6 mice were divided into six groups, each consisting of nine individuals. WPs were orally administered to C57BL/6 mice for 6 weeks. DEX was administered for 5-6 weeks to induce muscle atrophy (intraperitoneal injection, i.p.). Results: Microcomputer tomography (CT) analysis confirmed that WP significantly increased calf muscle volume and surface area in mice with DEX-induced muscle atrophy, as evidenced by tissue staining. Furthermore, it increased the area of muscle fibers and facilitated greater collagen deposition. Moreover, WP significantly decreased the levels of serum biomarkers associated with muscle damage, kidney function, and inflammatory cytokines. WP increased p-mTOR and p-p70S6K levels through the IGF-1/PI3K/Akt pathway, while concurrently decreasing protein catabolism via the FOXO pathway. Furthermore, the expression of proteins associated with myocyte differentiation increased noticeably. Conclusions: These results confirm that WP reduces muscle atrophy by regulating muscle protein homeostasis. Additionally, it is believed that it helps to relieve muscle atrophy by regulating the expression of myocyte differentiation factors. Therefore, we propose that WP plays a significant role in preventing and treating muscle wasting by functioning as a supplement to counteract muscle atrophy.


Assuntos
Dexametasona , Soro do Leite , Camundongos , Animais , Dexametasona/efeitos adversos , Soro do Leite/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Transdução de Sinais/fisiologia , Camundongos Endogâmicos C57BL , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/etiologia , Músculo Esquelético/patologia , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Peptídeos/efeitos adversos
6.
NPJ Biofilms Microbiomes ; 10(1): 24, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503759

RESUMO

Despite the potential benefits of herbal medicines for therapeutic application in preventing and treating various metabolic disorders, the mechanisms of action were understood incompletely. Ginseng (Panax ginseng), a commonly employed plant as a dietary supplement, has been reported to play its hot property in increasing body temperature and improving gut health. However, a comprehensive understanding of the mechanisms by which ginseng regulates body temperature and gut health is still incomplete. This paper illustrates that intermittent supplementation with ginseng extracts improved body temperature rhythm and suppressed inflammatory responses in peripheral metabolic organs of propylthiouracil (PTU)-induced hypothermic rats. These effects were associated with changes in gut hormone secretion and the microbiota profile. The in-vitro studies in ICE-6 cells indicate that ginseng extracts can not only act directly on the cell to regulate the genes related to circadian clock and inflammation, but also may function through the gut microbiota and their byproducts such as lipopolysaccharide. Furthermore, administration of PI3K inhibitor blocked ginseng or microbiota-induced gene expression related with circadian clock and inflammation in vitro. These findings demonstrate that the hot property of ginseng may be mediated by improving circadian clock and suppressing inflammation directly or indirectly through the gut microbiota and PI3K-AKT signaling pathways.


Assuntos
Relógios Circadianos , Microbioma Gastrointestinal , Panax , Ratos , Animais , Relógios Circadianos/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/farmacologia , Inflamação , Transdução de Sinais , Expressão Gênica
7.
J Insect Sci ; 24(2)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38491952

RESUMO

Modified atmosphere is effective in controlling Tribolium castaneum Herbst, but it has adaptations. Comprehending the potential mechanism of resistance to T. castaneum in a modified atmosphere will help advance related management methods. This study conducted a comparative transcriptomic and metabolomic analysis to understand the physiological mechanism of T. castaneum in adapting to CO2 stress. Results showed that there were a large number of differentially expressed genes (DEGs) in T. castaneum treated with different concentrations of CO2. Gene ontology (GO) analysis revealed significant enrichment of DEGs mainly in binding, catalytic activity, cell, membrane, membrane part, protein-containing complex, biological regulation, and cellular and metabolic process. Kyoto Encyclopedia of Genes and Genomes analysis showed that different treatments had different effects on the metabolic pathways of T. castaneum. DEGs induced by 25% CO2 were involved in arginine and proline metabolism, and 50% air + 50% CO2 treatment affected most kinds of metabolic pathways, mainly the signal transduction pathway, including PI3K-Akt signaling pathway, AMPK signaling pathway, neurotrophin signaling pathway, insulin signaling pathway, and thyroid hormone signaling. Ribosome and DNA replication were enriched under high CO2 stress (75% and 95%). The metabolomics revealed that different concentrations of CO2 treatments might inhibit the growth of T. castaneum through acidosis, or they may adapt to anoxic conditions through histamine and N-acetylhistamine. Multiple analyses have shown significant changes in histamine and N-acetylhistamine levels, as well as their associated genes, with increasing CO2 concentration. In conclusion, this study comprehensively revealed the molecular mechanism of T. castaneum responding to CO2 stress and provided the basis for an effectively modified atmosphere in the T. castaneum.


Assuntos
Besouros , Histamina/análogos & derivados , Tribolium , Animais , Besouros/genética , Tribolium/genética , Histamina/farmacologia , Dióxido de Carbono/farmacologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/farmacologia , Perfilação da Expressão Gênica
8.
Artigo em Inglês | MEDLINE | ID: mdl-38423708

RESUMO

Duvelisib (DUV) is chemically named as (S)-3-(1-((9H-Purin-6-yl)amino)ethyl)-8-chloro-2-phenylisoquinolin-1(2H)-one. It is a novel drug with a small molecular weight and characterized by dual phosphoinositide-3-kinase (PI3K)- and PI3K-inhibitory activity. The Food and Drug Administration (FDA) recently approved DUV for the management of small lymphocytic lymphoma (SLL) and relapsed or refractory chronic lymphocytic leukemia (CLL) in adult patients. DUV is marketed under the brand name of Copiktra® (Verastem, Inc., Needham, MA, USA). This chapter provides a critical extensive review of the literature, the description of DUV in terms of its names, formulae, elemental composition, appearance, and use in the treatment of CLL, SLL, and follicular lymphoma. The chapter also describes the methods for preparation of DUV, its physical-chemical properties, analytical methods for its determination, pharmacological properties, and dosing information.


Assuntos
Leucemia Linfocítica Crônica de Células B , Adulto , Humanos , Isoquinolinas/farmacologia , Isoquinolinas/uso terapêutico , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Fosfatidilinositol 3-Quinases/farmacologia , Fosfatidilinositol 3-Quinases/uso terapêutico , Purinas/farmacologia , Purinas/uso terapêutico
9.
Inhal Toxicol ; 36(3): 145-157, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38411938

RESUMO

OBJECTIVE: Chronic obstructive pulmonary disease (COPD) is a common disorder that is characterized by systemic and lung inflammation. Notoginsenoside R1 (NGR1) displays anti-inflammatory properties in numerous diseases. We aimed to explore the function and mechanism of NGR1 in COPD. MATERIALS AND METHODS: COPD rats were established through cigarette smoke exposure, lipopolysaccharide injection, and cold stimulation. Rat airway smooth muscle cells (ASMCs) were separated and identified. Then, ASMCs were treated with NGR1 (25 or 50 µM) and cigarette smoke extract (CSE). Thereafter, the vitality, proliferation, and migration of ASMCs were measured. Additionally, cell cycle, inflammation-related factors, α-SMA, and PI3K/AKT pathway-related marker expressions of the ASMCs were also detected. Molecular docking experiments were conducted to explore the interaction of NGR1 to PI3K, TGF-ß, p65, and AKT. Moreover, 740 Y-P (a PI3K/Akt pathway agonist) were used to validate the mechanism of NGR1 on COPD. RESULTS: NGR1 inhibited the proliferation and migration, but caused cell cycle arrest for CSE-triggered ASMCs. Furthermore, NGR1 not only decreased IL-1ß, IL-6, IL-8, and TNF-α contents, but also reduced α-SMA expression in CSE-stimulated ASMCs. Moreover, NGR1restrainedTGF-ß1 expression, PI3K, p65, and AKT phosphorylation in CSE-stimulated ASMCs. Molecular docking experiments showed NGR1 exhibited a strong binding ability to PI3K, TGF-ß1, p65, and AKT. Notably, the effects of NGR1 on the proliferation and migration of CSE-induced ASMCs were reversed by 740 Y-P. CONCLUSIONS: NGR1 can restrain the proliferation and migration of CSE-induced ASMCs, indicating that NGR1 may be a therapeutic candidate for treating COPD.


Assuntos
Ginsenosídeos , Proteínas Proto-Oncogênicas c-akt , Doença Pulmonar Obstrutiva Crônica , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Simulação de Acoplamento Molecular , Proliferação de Células , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Miócitos de Músculo Liso/metabolismo
10.
Transl Res ; 267: 10-24, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38302394

RESUMO

Cardiac fibrosis under chronic pressure overload is an end-stage adverse remodeling of heart. However, current heart failure treatments barely focus on anti-fibrosis and the effects are limited. We aimed to seek for a cardiac abundant and cardiac fibrosis specific piRNA, exploring its underlying mechanism and therapeutic potential. Whole transcriptome sequencing and the following verification experiments identified a highly upregulated piRNA (piRNA-000691) in transverse aortic constriction (TAC) mice, TAC pig, and heart failure human samples, which was abundant in heart and specifically expressed in cardiac fibroblasts. CFRPi was gradually increased along with the progression of heart failure, which was illustrated to promote cardiac fibrosis by gain- and loss-of-function experiments in vitro and in vivo. Knockdown of CFRPi in mice alleviated cardiac fibrosis, reversed decline of systolic and diastolic functions from TAC 6 weeks to 8 weeks. Mechanistically, CFRPi inhibited APLN, a protective peptide that increased in early response and became exhausted at late stage. Knockdown of APLN in vitro notably aggravated cardiac fibroblasts activation and proliferation. In vitro and in vivo evidence both indicated Pi3k-AKT-mTOR as the downstream effector pathway of CFRPi-APLN interaction. Collectively, we here identified CFPPi as a heart abundant and cardiac fibrosis specific piRNA. Targeting CFRPi resulted in a sustainable increase of APLN and showed promising therapeutical prospect to alleviate fibrosis, rescue late-stage cardiac dysfunction, and prevent heart failure.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Camundongos , Humanos , Animais , Suínos , RNA de Interação com Piwi , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Fosfatidilinositol 3-Quinases/uso terapêutico , Transdução de Sinais , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Cardiomiopatias/metabolismo , Fibroblastos/patologia , Fibrose , Camundongos Endogâmicos C57BL , Remodelação Ventricular , Miocárdio/patologia
11.
Pathol Int ; 74(4): 197-209, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38353379

RESUMO

Chronic hepatic diseases often involve fibrosis as a pivotal factor in their progression. This study investigates the regulatory mechanisms of Yin Yang 1 (YY1) in hepatic fibrosis. Our data reveal that YY1 binds to the prolyl hydroxylase domain 1 (PHD1) promoter. Rats treated with carbon tetrachloride (CCl4) display heightened fibrosis in liver tissues, accompanied by increased levels of YY1, PHD1, and the fibrosis marker alpha-smooth muscle actin (α-SMA). Elevated levels of YY1, PHD1, and α-SMA are observed in the liver tissues of CCl4-treated rats, primary hepatic stellate cells (HSCs) isolated from fibrotic liver tissues, and transforming growth factor beta-1 (TGF-ß1)-induced HSCs. The human HSC cell line LX-2, upon YY1 overexpression, exhibits enhanced TGF-ß1-induced activation, leading to increased expression of extracellular matrix (ECM)-related proteins and inflammatory cytokines. YY1 silencing produces the opposite effect. YY1 exerts a positive regulatory effect on the activation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway and PHD1 expression. PHD1 silencing rescues the promotion of YY1 in cell activation, ECM-related protein expression, and inflammatory cytokine production in TGF-ß1-treated LX-2 cells. Overall, our findings propose a model wherein YY1 facilitates TGF-ß1-induced HSC activation, ECM-related protein expression, and inflammatory cytokine production by promoting PHD1 expression and activating the PI3K/AKT signaling pathway. This study positions YY1 as a promising therapeutic target for hepatic fibrosis.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Fator de Crescimento Transformador beta1 , Humanos , Ratos , Animais , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta1/uso terapêutico , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Fosfatidilinositol 3-Quinases/uso terapêutico , Yin-Yang , Cirrose Hepática/metabolismo , Matriz Extracelular/metabolismo , Inflamação/metabolismo , Tetracloreto de Carbono
12.
Biomed Mater ; 19(2)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38215478

RESUMO

Hepatocellular carcinoma remains a challenging contributor to the global cancer and related mortality, and claims approximately 800,000 deaths each year. Dysregulation or loss of function mutations involving the tumor suppressor gene, phosphatase and tensin homolog deleted on chromosome ten (PTEN), has been well-characterized in various cancers to elicit anomalous cell proliferation and oncogenic transformation. However, the delivery and bioavailability of genes/drugs of interest to carcinomas remains a serious bottleneck behind the success of any anti-cancer formulation. In this study, we have engineered nanoliposomes containing PTEN plasmids, plumbagin, and antioxidant cerium oxide nanoparticles (Lipo-PTEN-Plum) to restore the PTEN expression and inhibit the AKT/PI3K pathway. The Lipo-PTEN-Plum was quasi-spherical in shape with ∼110 nm diameter and ∼64% plumbagin loading efficiency. The Lipo-PTEN-Plum was successfully internalized HepG2 cells, restore PTEN expression and inhibit PI3K/AKT pathway to induce death in cells grown in monolayer and in form of spheroids. Mechanistically, the formulation showed G2/M cell cycle arrest, DNA damage and apoptosis in hepatic cancer cells. Other cellular events such as Caspase-7 overexpression and PI3K (phosphoinositide 3-kinase), AKT (a serine/threonine protein kinase), PARP [Poly (ADP-ribose) polymerases], and mTOR (Mammalian target of rapamycin) inhibition led to the apoptosis in hepatic cancer cells. The mRNA expression profile of PTEN, PI3K, AKT3, Caspase-7, PARP and mTOR proteins, primarily controlling the cancer cell proliferation and apoptosis, suggest that exogenous supply of PTEN could regulate the expression of oncogenic proteins and thus cancer progression.


Assuntos
Neoplasias Hepáticas , Naftoquinonas , Fosfatidilinositol 3-Quinases , Humanos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/farmacologia , Caspase 7/genética , Caspase 7/farmacologia , Antioxidantes , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Proliferação de Células , Linhagem Celular Tumoral , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Apoptose , Plasmídeos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo
13.
Diabetes Metab J ; 48(1): 83-96, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38173373

RESUMO

BACKGRUOUND: Glucagon-like peptide-1 receptor agonist (GLP-1RA), which is a therapeutic agent for the treatment of type 2 diabetes mellitus, has a beneficial effect on the cardiovascular system. METHODS: To examine the protective effects of GLP-1RAs on proliferation and migration of vascular smooth muscle cells (VSMCs), A-10 cells exposed to angiotensin II (Ang II) were treated with either exendin-4, liraglutide, or dulaglutide. To examine the effects of GLP-1RAs on vascular calcification, cells exposed to high concentration of inorganic phosphate (Pi) were treated with exendin-4, liraglutide, or dulaglutide. RESULTS: Ang II increased proliferation and migration of VSMCs, gene expression levels of Ang II receptors AT1 and AT2, proliferation marker of proliferation Ki-67 (Mki-67), proliferating cell nuclear antigen (Pcna), and cyclin D1 (Ccnd1), and the protein expression levels of phospho-extracellular signal-regulated kinase (p-Erk), phospho-c-JUN N-terminal kinase (p-JNK), and phospho-phosphatidylinositol 3-kinase (p-Pi3k). Exendin-4, liraglutide, and dulaglutide significantly decreased the proliferation and migration of VSMCs, the gene expression levels of Pcna, and the protein expression levels of p-Erk and p-JNK in the Ang II-treated VSMCs. Erk inhibitor PD98059 and JNK inhibitor SP600125 decreased the protein expression levels of Pcna and Ccnd1 and proliferation of VSMCs. Inhibition of GLP-1R by siRNA reversed the reduction of the protein expression levels of p-Erk and p-JNK by exendin-4, liraglutide, and dulaglutide in the Ang II-treated VSMCs. Moreover, GLP-1 (9-36) amide also decreased the proliferation and migration of the Ang II-treated VSMCs. In addition, these GLP-1RAs decreased calcium deposition by inhibiting activating transcription factor 4 (Atf4) in Pi-treated VSMCs. CONCLUSION: These data show that GLP-1RAs ameliorate aberrant proliferation and migration in VSMCs through both GLP-1Rdependent and independent pathways and inhibit Pi-induced vascular calcification.


Assuntos
Diabetes Mellitus Tipo 2 , Calcificação Vascular , Humanos , Angiotensina II/farmacologia , Angiotensina II/metabolismo , Exenatida/farmacologia , Liraglutida/farmacologia , Músculo Liso Vascular/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Antígeno Nuclear de Célula em Proliferação/farmacologia , Receptores de Peptídeos Semelhantes ao Glucagon , Diabetes Mellitus Tipo 2/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Fosfatos/metabolismo , Fosfatos/farmacologia , Proliferação de Células , Calcificação Vascular/metabolismo
14.
Adv Sci (Weinh) ; 11(12): e2306305, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38225741

RESUMO

The scar repair inevitably causes damage of skin function and loss of skin appendages such as hair follicles (HF). It is of great challenge in wound repair that how to intervene in scar formation while simultaneously remodeling HF niche and inducing in situ HF regeneration. Here, chemical reprogramming techniques are used to identify a clinically chemical cocktail (Tideglusib and Tamibarotene) that can drive fibroblasts toward dermal papilla cell (DPC) fate. Considering the advantage of biomaterials in tissue repair and their regulation in cell behavior that may contributes to cellular reprogramming, the artificial HF seeding (AHFS) hydrogel microspheres, inspired by the natural processes of "seeding and harvest", are constructed via using a combination of liposome nanoparticle drug delivery system, photoresponsive hydrogel shell, positively charged polyamide modification, microfluidic and photocrosslinking techniques. The identified chemical cocktail is as the core nucleus of AHFS. In vitro and in vivo studies show that AHFS can regulate fibroblast fate, induce fibroblast-to-DPC reprogramming by activating the PI3K/AKT pathway, finally promoting wound healing and in situ HF regeneration while inhibiting scar formation in a two-pronged translational approach. In conclusion, AHFS provides a new and effective strategy for functional repair of skin wounds.


Assuntos
Folículo Piloso , Cicatrização , Humanos , Cicatrização/fisiologia , Cicatriz/patologia , Regeneração/fisiologia , Hidrogéis/farmacologia , Microesferas , Fosfatidilinositol 3-Quinases/farmacologia
15.
Arab J Gastroenterol ; 25(1): 28-36, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38220479

RESUMO

BACKGROUND AND STUDY AIM: Hepatocellular carcinoma (HCC) is the fifth leading cause of cancer-related mortality worldwide, and, more than half of these cases are diagnosed in China. However, effective treatment for HCC is still limited. MATERIAL AND METHODS: C-X-C motif chemokine receptor 4 (CXCR4) was first activated and inhibited in HepG2 cells using a pharmacological method. HepG2 cell proliferation was detected using the CCK-8 method. Metastasis and apoptosis of HepG2 cells were detected using wound healing and flow cytometry. The expression of each target molecule related to metastasis and invasion, such as MMPs, E-cadherin and the PI3K/AKT/Mcl-1/PARP signaling pathway was detected by western blotting. The secretion of molecular metastases was detected using competitive ELISA. RESULTS: This study constructed a CXCR4 activation and inhibition model in HepG2 cells. CXCR4 inhibition promoted the inhibitory effect of plantamajoside on the proliferation and metastasis of cells, which led to apoptosis. Furthermore, we found that the expression of apoptosis-related proteins was increased after treatment with plantamajoside combined with CXCR4 inhibition. In addition, the expression and secretion of pro-metastatic proteins, including MMPs and E-cadherin were decreased. We also noticed that this effect might be mediated by the PI3K/AKT/Mcl-1/PARP signaling pathway. CONCLUSION: CXCR4 inhibition may contribute to the treatment of HCC. Inhibition of CXCR4 expression contributes to the therapeutic effect of plantamajoside; the effect of plantamajoside might be mediated by the PI3K/AKT/Mcl-1/PARP signaling pathway; and CXCR4 might be a therapeutic target of HCC.


Assuntos
Carcinoma Hepatocelular , Catecóis , Glucosídeos , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/farmacologia , Proteínas Proto-Oncogênicas c-akt/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Fosfatidilinositol 3-Quinases/uso terapêutico , Proteína de Sequência 1 de Leucemia de Células Mieloides/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Movimento Celular , Apoptose , Caderinas , Receptores de Quimiocinas/uso terapêutico
16.
Inhal Toxicol ; 36(1): 1-12, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38175690

RESUMO

Background: Paraquat (PQ) plays an important role in agricultural production due to its highly effective herbicidal effect. However, it has led to multiple organ failure in those who have been poisoned, with damage most notable in the lungs and ultimately leading to death. Because of little research has been performed at the genetic level, and therefore, the specific genetic changes caused by PQ exposure are unclear.Methods: Paraquat poisoning model was constructed in Sprague Dawley (SD) rats, and SD rats were randomly divided into Control group, paraquat (PQ) poisoning group and Anthrahydroquinone-2,6-disulfonate (AH2QDS) treatment group. Then, the data was screened and quality controlled, compared with reference genes, optimized gene structure, enriched at the gene expression level, and finally, signal pathways with significantly different gene enrichment were screened.Results: This review reports on lung tissues from paraquat-intoxicated Sprague Dawley (SD) rats that were subjected to RNA-seq, the differentially expressed genes were mainly enriched in PI3K-AKT, cGMP-PKG, MAPK, Focal adhesion and other signaling pathways.Conclusion: The signaling pathways enriched with these differentially expressed genes are summarized, and the important mechanisms mediated through these pathways in acute lung injury during paraquat poisoning are outlined to identify important targets for AH2QDS treatment of acute lung injury due to paraquat exposure, information that will be used to support a subsequent in-depth study on the mechanism of PQ action.


Assuntos
Lesão Pulmonar Aguda , Paraquat , Ratos , Animais , Ratos Sprague-Dawley , Paraquat/toxicidade , RNA-Seq , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo , Pulmão , Transdução de Sinais , Tecnologia
17.
Z Rheumatol ; 83(Suppl 1): 78-87, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37851166

RESUMO

BACKGROUND: Salidroside (Sal) is a natural product commonly isolated from Rhodiola rosea L., which has been found to have numerous pharmacological activities (e.g., ameliorating apoptosis and inflammation, and acting as an antioxidant) in various diseases, but its concrete function in rheumatoid arthritis (RA) has not been revealed yet. Here, we aimed to explore the specific role and underlying mechanisms of Sal in RA-fibroblast-like synoviocytes (RA-FLSs). METHODS: Cell counting kit 8 (CCK-8) was used to assess the viability of normal-FLSs and RA-FLSs. Cell apoptosis in RA-FLSs was evaluated by flow cytometry. Western blotting was prepared to examine the levels of apoptosis- and signaling-related proteins. Wound-healing and Transwell assays were conducted to examine RA-FLSs migration and invasion. Enzyme-linked immunosorbent assay (ELISA) was used to assess the effect of Sal on tumor necrosis factor-alpha (TNF-α)-induced inflammation in RA-FLSs. RA animal model was established through complete Freund's adjuvant (CFA) induction, and the histopathological changes in synovial tissues of the rat model were analyzed by H&E staining. RESULTS: RA-FLSs were treated with 200 µM Sal for 24 h, and cell viability was significantly suppressed. Sal promoted RA-FLSs apoptosis. The migratory and invasive abilities of RA-FLSs were markedly inhibited by Sal. Sal incubation reduced the levels of inflammatory cytokines interleukin­8 (IL-8), IL-1ß, and IL­6 in RA-FLSs under the stimulation of TNF­α. Subsequently, Sal downregulated phosphorylated phosphatidylinositol­3 kinase (p-PI3K) and protein kinase (p-AKT) expression in RA-FLSs. After the treatment with pathway activator 740Y­P (20 µM) in RA-FLSs, the promotive effect of Sal on cell apoptosis was reversed, and inhibitory effects of it on cell viability, migration, invasion, and inflammatory response were abolished. Sal inhibited RA development in the CFA-induced rat model. CONCLUSION: Sal suppressed cell growth and inflammation in RA-FLSs by inactivating PI3K/AKT-signaling pathways.


Assuntos
Artrite Reumatoide , Glucosídeos , Fragmentos de Peptídeos , Fenóis , Receptores do Fator de Crescimento Derivado de Plaquetas , Sinoviócitos , Ratos , Animais , Sinoviócitos/metabolismo , Sinoviócitos/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/farmacologia , Fator de Necrose Tumoral alfa , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/patologia , Inflamação/tratamento farmacológico , Inflamação/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Células Cultivadas
18.
J Cosmet Dermatol ; 23(1): 256-270, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37435953

RESUMO

BACKGROUND: Ultraviolet (UV) is the main reason to cause photoaging skin which not only hinders beauty, brings the patients with psychological burden, but also pathologically leads to the occurrence of tumors in skin. OBJECTIVE: This study goes into the inhibitory effect and mechanism of seawater pearl hydrolysate (SPH) to address human skin keratinocytes photoaging induced by UVB. METHODS: The photoaging model of Hacat cell was constructed by UVB irradiation, the levels of oxidative stress, apoptosis, aging, autophagy and autophagy-related protein and signal pathway expression were assessed to characterize the inhibitory effect and mechanism of SPH on photoaging Hacat cell. RESULTS: Seawater pearl hydrolysate significantly accelerated (p < 0.05) the activities of superoxide dismutase, catalase, and glutathione peroxidase, and markedly reduced (p < 0.05) the contents of reactive oxygen species (ROS), malondialdehyde, protein carbonyl compound and nitrosylated tyrosine protein, aging level, apoptosis rate in Hacat cell induced by 200 mJ cm-2 UVB after 24 and 48 h of culture; high dose SPH significantly raised (p < 0.05) relative expression level of p-Akt, p-mTOR proteins, and markedly decreased (p < 0.05) relative expression level of LC3II protein, p-AMPK, and autophagy level in Hacat cell induced by 200 mJ cm-2 UVB, or in combination with the intervention of PI3K inhibitor or AMPK overexpression after 48 h of culture. CONCLUSION: Seawater pearl hydrolysate can effectively inhibit 200 mJ cm-2 UVB-induced photoaging of Hacat cells. The mechanism indicates removing the excessive ROS through increasing the antioxidation of photoaging Hacat cells. Once redundant ROS is eliminated, SPH works to reduce AMPK, increase PI3K-Akt pathway expression, activate mTOR pathway to lowdown autophagy level, and as a result, inhibit apoptosis and aging in photoaging Hacat cells.


Assuntos
Envelhecimento da Pele , Humanos , Espécies Reativas de Oxigênio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Queratinócitos/metabolismo , Estresse Oxidativo , Apoptose , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/farmacologia , Autofagia , Raios Ultravioleta/efeitos adversos
19.
Mol Cancer Ther ; 23(3): 368-380, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38052765

RESUMO

BTK and PI3K inhibitors are among the drugs approved for the treatment of patients with lymphoid neoplasms. Although active, their ability to lead to long-lasting complete remission is rather limited, especially in the lymphoma setting. This indicates that tumor cells often develop resistance to the drugs. We started from a marginal zone lymphoma cell line, Karpas-1718, kept under prolonged exposure to the PI3Kδ inhibitor idelalisib until acquisition of resistance, or with no drug. Cells underwent transcriptome, miRNA and methylation profiling, whole-exome sequencing, and pharmacologic screening, which led to the identification of the overexpression of ERBB4 and its ligands HBEGF and NRG2 in the resistant cells. Cellular and genetic experiments demonstrated the involvement of this axis in blocking the antitumor activity of various BTK/PI3K inhibitors, currently used in the clinical setting. Addition of recombinant HBEGF induced resistance to BTK/PI3K inhibitors in parental cells and in additional lymphoma models. Combination with the ERBB inhibitor lapatinib was beneficial in resistant cells and in other lymphoma models already expressing the identified resistance factors. An epigenetic reprogramming sustained the expression of the resistance-related factors, and pretreatment with demethylating agents or EZH2 inhibitors overcame the resistance. Resistance factors were also shown to be expressed in clinical specimens. In conclusion, we showed that the overexpression of ERBB4 and its ligands represents a novel mechanism of resistance for lymphoma cells to bypass the antitumor activity of BTK and PI3K inhibitors and that targeted pharmacologic interventions can restore sensitivity to the small molecules.


Assuntos
Antineoplásicos , Linfoma de Células B , Humanos , Fosfatidilinositol 3-Quinases/farmacologia , Linhagem Celular Tumoral , Transdução de Sinais , Linfoma de Células B/patologia , Lapatinib/farmacologia , Lapatinib/uso terapêutico , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Receptor ErbB-4/farmacologia
20.
Psychopharmacology (Berl) ; 241(1): 119-138, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37747506

RESUMO

RATIONALE: The endocannabinoid (eCB) system critically controls anxiety and fear-related behaviours. Anandamide (AEA), a prominent eCB ligand, is a hydrophobic lipid that requires chaperone proteins such as Fatty Acid Binding Proteins (FABPs) for intracellular transport. Intracellular AEA transport is necessary for degradation, so blocking FABP activity increases AEA neurotransmission. OBJECTIVE: To investigate the effects of a novel FABP5 inhibitor (SBFI-103) in the basolateral amygdala (BLA) on anxiety and fear memory. METHODS: We infused SBFI-103 (0.5 µg-5 µg) to the BLA of adult male Sprague Dawley rats and ran various anxiety and fear memory behavioural assays, neurophysiological recordings, and localized molecular signaling analyses. We also co-infused SBFI-103 with the AEA inhibitor, LEI-401 (3 µg and 10 µg) to investigate the potential role of AEA in these phenomena. RESULTS: Acute intra-BLA administration of SBFI-103 produced strong anxiolytic effects across multiple behavioural tests. Furthermore, animals exhibited acute and long-term accelerated associative fear memory extinction following intra-BLA FABP5 inhibition. In addition, BLA FABP5 inhibition induced strong modulatory effects on putative PFC pyramidal neurons along with significantly increased gamma oscillation power. Finally, we observed local BLA changes in the phosphorylation activity of various anxiety- and fear memory-related molecular biomarkers in the PI3K/Akt and MAPK/Erk signaling pathways. At all three levels of analyses, we found the functional effects of SBFI-103 depend on availability of the AEA ligand. CONCLUSIONS: These findings demonstrate a novel intra-BLA FABP5 signaling mechanism regulating anxiety and fear memory behaviours, neuronal activity states, local anxiety-related molecular pathways, and functional AEA modulation.


Assuntos
Ansiolíticos , Complexo Nuclear Basolateral da Amígdala , Animais , Masculino , Ratos , Tonsila do Cerebelo/metabolismo , Ansiolíticos/farmacologia , Ansiolíticos/metabolismo , Extinção Psicológica , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas de Ligação a Ácido Graxo/farmacologia , Medo/fisiologia , Ligantes , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...